首页> 外文OA文献 >A Novel Ultrasonic Method for Accurate Characterization of Microstructural Gradients in Monolithic and Composite Tubular Structures
【2h】

A Novel Ultrasonic Method for Accurate Characterization of Microstructural Gradients in Monolithic and Composite Tubular Structures

机译:精确表征整体和复合管状结构中微结构梯度的新型超声波方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Prior studies have shown that ultrasonic velocity/time-of-flight imaging that uses back surface echo reflections to gauge volumetric material quality is well suited (perhaps more so than is the commonlyused peak amplitude c-scanning) for quantitative characterization of microstructural gradients. Such gradients include those due to pore fraction, density, fiber fraction, and chemical composition variations [11–15]. Variations in these microstructural factors can affect the uniformity of physical performance (including mechanical [stiffness, strength], thermal [conductivity], and electrical [conductivity, superconducting transition temperature], etc. performance) of monolithic and composite [1,3,6,12]. A weakness of conventional ultrasonic velocity/time-of-flight imaging (as well as to a lesser extent ultrasonic peak amplitude c-scanning where back surface echoes are gated [17] is that the image shows the effects of thickness as well as microstructural variations unless the part is uniformly thick. This limits this type of imaging’s usefulness in practical applications. The effect of thickness is easily observed from the equation for pulse-echo waveform time-of-flight (2τ) between the first front surface echo (FS) and the first back surface echo (B1), or between two successive back surface echoes where: 2τ=(2d)V (1) where d is the sample thickness and V is the velocity of ultrasound in the material. Interpretation of the time-of-flight image is difficult as thickness variation effects can mask or overemphasize the true microstructural variation portrayed in the image of a part containing thickness variations. Thickness effects on time-of-flight can also be interpreted by rearranging equation (1) to calculate velocity: V=(2d)2τ (2) such that velocity is inversely proportional to time-of-flight. Velocity and time-of-flight maps will be affected similarly (although inversely in terms of magnitude) by thickness variations, and velocity maps are used in this investigation to indicate time-of-flight variations.
机译:先前的研究表明,使用背面回波反射来测量体积材料质量的超声速度/飞行时间成像非常适合(也许比常用的峰幅度c扫描更适合)对微观结构梯度进行定量表征。这种梯度包括由于孔隙分数,密度,纤维分数和化学成分变化而引起的梯度[11-15]。这些微结构因素的变化会影响整体式和复合材料的物理性能(包括机械[刚度,强度],热[电导率]和电[电导率,超导转变温度]等性能)的均匀性[1,3,6 ,12]。传统超声速度/飞行时间成像的缺点(以及较小程度的超声峰幅度c扫描(在其中对背面回波进行门控)[17])是该图像显示了厚度以及微结构变化的影响除非部件厚度均匀,否则将限制这种类型的成像在实际应用中的实用性可以从第一前表面回波(FS)之间的脉冲回波波形飞行时间(2τ)公式轻松观察厚度的影响和第一个背面回波(B1)或两个连续的背面回波之间,其中:2τ=(2d)V(1)其中d是样品厚度,V是材料中超声的速度。飞行厚度图像很难,因为厚度变化效应会掩盖或过分强调包含厚度变化的零件图像中真实的微观结构变化,厚度对飞行时间的影响也可以通过重新排列来解释式(1)计算速度:V =(2d)2τ(2)使得速度与飞行时间成反比。速度和飞行时间图也会受到厚度变化的类似影响(尽管幅度相反),并且在此研究中使用速度图来指示飞行时间变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号